[00912580]一种基于深度学习的手势图像关键帧提取方法
交易价格:
面议
所属行业:
软件
类型:
发明专利
技术成熟度:
通过中试
专利所属地:中国
专利号:ZL201910363547.0
交易方式:
技术转让
联系人:
浙江理工大学
进入空间
所在地:浙江杭州市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明公开了一种基于深度学习的手势图像关键帧提取方法。首先读取输入的手势视频,将输入的手势视频转换为视频帧图像;采用Mobilenet-SSD目标检测模型对视频帧图像中的手势进行检测,并对检测出的手势进行分割;采用VGG16训练模型训练手势分割图像从而得到对应的抽象特征,并进行空间梯度的计算,根据相邻两帧图片的梯度差,设定合适的阈值进行关键帧的判定。本发明提出利用Mobilenet-SSD目标检测模型对手部区域进行检测与分割,去除了背景区域噪声,利用VGG-16精确提取手部抽象特征,不仅使得图片的表达能力大大增强,而且降低了参数量,减小了模型的复杂度,适用于这种小幅变化的视频关键帧提取。
本发明公开了一种基于深度学习的手势图像关键帧提取方法。首先读取输入的手势视频,将输入的手势视频转换为视频帧图像;采用Mobilenet-SSD目标检测模型对视频帧图像中的手势进行检测,并对检测出的手势进行分割;采用VGG16训练模型训练手势分割图像从而得到对应的抽象特征,并进行空间梯度的计算,根据相邻两帧图片的梯度差,设定合适的阈值进行关键帧的判定。本发明提出利用Mobilenet-SSD目标检测模型对手部区域进行检测与分割,去除了背景区域噪声,利用VGG-16精确提取手部抽象特征,不仅使得图片的表达能力大大增强,而且降低了参数量,减小了模型的复杂度,适用于这种小幅变化的视频关键帧提取。