[00902280]基于全卷积神经网络多尺度特征的眼底图像血管分割方法
交易价格:
面议
所属行业:
网络
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN202010002508.0
交易方式:
其他
联系人:
所在地:浙江杭州市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
一种基于全卷积神经网络多尺度特征的眼底图像血管分割方法,包括以下步骤:1)对眼底视网膜图像进行预处理;2)将预处理后的图像分割成图像块进行数据扩充;3)构建卷积神经网络模型,并利用扩充后的数据进行网络训练;4)将训练好的模型进行测试,得到分割结果。本发明通过连接一种编码和两种不同的解码结构,并采用多种跳过连接,可以克服血管图像数据集数量少、图像质量低导致的分割精度低等缺点,更加充分地融合不同深度的特征,并且有效缓解由网络深度增加导致的梯度消失问题,与传统分割方法相比,拥有更高的准确率与较高的鲁棒性。
一种基于全卷积神经网络多尺度特征的眼底图像血管分割方法,包括以下步骤:1)对眼底视网膜图像进行预处理;2)将预处理后的图像分割成图像块进行数据扩充;3)构建卷积神经网络模型,并利用扩充后的数据进行网络训练;4)将训练好的模型进行测试,得到分割结果。本发明通过连接一种编码和两种不同的解码结构,并采用多种跳过连接,可以克服血管图像数据集数量少、图像质量低导致的分割精度低等缺点,更加充分地融合不同深度的特征,并且有效缓解由网络深度增加导致的梯度消失问题,与传统分割方法相比,拥有更高的准确率与较高的鲁棒性。