[00335127]一种基于L1/2稀疏约束卷积非负矩阵分解的语音去噪方法和系统
交易价格:
面议
所属行业:
乐器
类型:
发明专利
技术成熟度:
通过小试
专利所属地:中国
专利号:CN201610452012.7
交易方式:
资料待完善
联系人:
安徽大学
进入空间
所在地:安徽合肥市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
摘要:本发明公开了一种基于L1/2稀疏约束卷积非负矩阵分解的语音去噪方法和系统。在单通道语音增强中,假设含噪语音信号v(i)为噪声信号n(i)和语音信号s(i)加性不相关,即v(i)=n(i)+s(i),利用CNMF方法对特定噪声进行训练得到噪声基信息;然后以噪声基作为先验信息,使用CNMF_L1/2方法对含噪语言进行分解得到语音基,最后合成去噪后的语音。本发明方法能更好地刻画帧之间语音的相关性;并且使用L1/2正则项对语音基系数矩阵进行强稀疏约束,可实现分离后的语音包含更少的残留噪声。相较与传统方法如谱减法、维纳滤波法以及最小均方差对数域谱估计法等,更能够提高增强后语音的可懂度。
摘要:本发明公开了一种基于L1/2稀疏约束卷积非负矩阵分解的语音去噪方法和系统。在单通道语音增强中,假设含噪语音信号v(i)为噪声信号n(i)和语音信号s(i)加性不相关,即v(i)=n(i)+s(i),利用CNMF方法对特定噪声进行训练得到噪声基信息;然后以噪声基作为先验信息,使用CNMF_L1/2方法对含噪语言进行分解得到语音基,最后合成去噪后的语音。本发明方法能更好地刻画帧之间语音的相关性;并且使用L1/2正则项对语音基系数矩阵进行强稀疏约束,可实现分离后的语音包含更少的残留噪声。相较与传统方法如谱减法、维纳滤波法以及最小均方差对数域谱估计法等,更能够提高增强后语音的可懂度。