X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
平台简介 | 帮助中心
欢迎来到科易厦门城市创新综合服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00294215]一种基于流形的语音情感识别方法

交易价格: 面议

所属行业: 乐器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201310383093.6

交易方式: 技术转让 技术转让 技术入股

联系人: 华南理工大学

进入空间

所在地:广东广州市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明提供一种基于流形的语音情感识别方法,包含以下步骤:提取测试语句语音特征:MFCC、LPCC、LFPC、ZCPA、PLP和RASTA-PLP;计算所提取语音特征的局部均值、方差,并计算所提取语音特征一阶差分的局部均值、方差,并将它们串接,构成测试语句的局部统计特征;采用通用背景模型UBM和测试语句的局部统计特征,生成测试语句的特定高斯混合模型GMM,再将GMM的所有均值连接成向量作为该测试语句的特征向量;通过集成特征选择算法和多集群特征选择算法MCFS选择的特征,变换测试语句的特征向量;采用支持向量机分类模型,以特征选择后的测试语句的特征向量为输入,分类测试语句的情感类别。本发明的方法,其语音情感识别的准确度高。
摘要:本发明提供一种基于流形的语音情感识别方法,包含以下步骤:提取测试语句语音特征:MFCC、LPCC、LFPC、ZCPA、PLP和RASTA-PLP;计算所提取语音特征的局部均值、方差,并计算所提取语音特征一阶差分的局部均值、方差,并将它们串接,构成测试语句的局部统计特征;采用通用背景模型UBM和测试语句的局部统计特征,生成测试语句的特定高斯混合模型GMM,再将GMM的所有均值连接成向量作为该测试语句的特征向量;通过集成特征选择算法和多集群特征选择算法MCFS选择的特征,变换测试语句的特征向量;采用支持向量机分类模型,以特征选择后的测试语句的特征向量为输入,分类测试语句的情感类别。本发明的方法,其语音情感识别的准确度高。

推荐服务:

智能制造服务热线:0592-5380947

运营商:厦门科易帮信息技术有限公司     

增值电信业务许可证:闽B2-20100023      闽ICP备07063032号-5