[00260651]基于自适应滤波与AR模型的高速铣削颤振在线识别方法
交易价格:
面议
所属行业:
通用零部件
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201710047504.2
交易方式:
技术转让
技术转让
技术入股
联系人:
西安交通大学
进入空间
所在地:陕西西安市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明一种基于自适应滤波与AR模型的高速铣削颤振在线识别方法,包含下述步骤1)通过对主轴系统频响函数测量,得到系统的主模态;2)状态信息采集,采集到的主轴振动信号且表示为a(k);3)对振动信号进行敏感颤振频带滤波;对采集到的振动信号a(k)进行敏感颤振频带滤波,滤波之后的信号表示为b(k);4)对信号进行自适应滤波;5)AR建模与参数估计;5.1对误差信号e(k)进行参数化AR建模,5.2通过误差信号e(k)的参数化模型,对模型参数η(k)进行估计,进一步通过特征方程求解AR模型的特征根λ;5.3特征根λ中绝对值最大的值|λ|max可以作为铣削稳定性的判据;6)判断颤振状态,当|λ|max>1则系统不稳定,即发生颤振;否则系统稳定。
本发明一种基于自适应滤波与AR模型的高速铣削颤振在线识别方法,包含下述步骤1)通过对主轴系统频响函数测量,得到系统的主模态;2)状态信息采集,采集到的主轴振动信号且表示为a(k);3)对振动信号进行敏感颤振频带滤波;对采集到的振动信号a(k)进行敏感颤振频带滤波,滤波之后的信号表示为b(k);4)对信号进行自适应滤波;5)AR建模与参数估计;5.1对误差信号e(k)进行参数化AR建模,5.2通过误差信号e(k)的参数化模型,对模型参数η(k)进行估计,进一步通过特征方程求解AR模型的特征根λ;5.3特征根λ中绝对值最大的值|λ|max可以作为铣削稳定性的判据;6)判断颤振状态,当|λ|max>1则系统不稳定,即发生颤振;否则系统稳定。