X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
平台简介 | 帮助中心
欢迎来到科易厦门城市创新综合服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00250328]风力发电机组齿轮箱故障诊断方法

交易价格: 面议

所属行业: 风能

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201510166216.X

交易方式: 技术转让 技术转让 技术入股

联系人: 科小易

进入空间

所在地:福建厦门市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

本发明考虑风力发电机组齿轮箱振动信号的非平稳特征、故障程度识别与故障部位诊断等重要因素,提出了一种基于LMD(Local mean decomposition,局部均值分解)和优化K均值聚类算法的风力发电机组齿轮箱故障诊断方法,该方法首先采集风力发电机组齿轮箱各测点的原始振动加速度信号,然后采用LMD方法将原始振动加速度信号分解为若干个PF(Product function,简称PF)分量,再以相关系数最大为原则选取PF分量进行信号重构,并对重构后的信号进行Hilbert包络解调分析,以便进一步提取故障特征量,最后应用优化K均值聚类算法进行故障部位和故障程度分类。
本发明考虑风力发电机组齿轮箱振动信号的非平稳特征、故障程度识别与故障部位诊断等重要因素,提出了一种基于LMD(Local mean decomposition,局部均值分解)和优化K均值聚类算法的风力发电机组齿轮箱故障诊断方法,该方法首先采集风力发电机组齿轮箱各测点的原始振动加速度信号,然后采用LMD方法将原始振动加速度信号分解为若干个PF(Product function,简称PF)分量,再以相关系数最大为原则选取PF分量进行信号重构,并对重构后的信号进行Hilbert包络解调分析,以便进一步提取故障特征量,最后应用优化K均值聚类算法进行故障部位和故障程度分类。

推荐服务:

智能制造服务热线:0592-5380947

运营商:厦门科易帮信息技术有限公司     

增值电信业务许可证:闽B2-20100023      闽ICP备07063032号-5