[00244382]一种基于稀疏均值的模糊聚类方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201610629774.X
交易方式:
技术转让
技术转让
技术入股
联系人:
浙江工业大学
进入空间
所在地:浙江杭州市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
本发明涉及一种基于稀疏均值的模糊聚类方法,将待聚类的文档用向量空间模型表示为高维稀疏向量,设置参数,初始化均值,基于当前均值更新所有隶属度的值,更新权重,然后基于隶属度更新对应的均值,当对应的均值不再变化或迭代次数最大时迭代结束,输出聚类结果,否则重复。本发明通过稀疏均值使得均值也就是类中心点和样本点一样具有局域稀疏特性,增加基于样本点和均值欧氏距离来描述样本点和类相似性的有效性,在时间上更加高效,产生具有稀疏特性的均值使得类中心点更加自然地代表稀疏样本点的特性,同时为了增加对均值的稀疏性的控制,还在目标函数中加入均值范数的正则项以得到新的最小化目标函数,使得可以更加快速的求解。
本发明涉及一种基于稀疏均值的模糊聚类方法,将待聚类的文档用向量空间模型表示为高维稀疏向量,设置参数,初始化均值,基于当前均值更新所有隶属度的值,更新权重,然后基于隶属度更新对应的均值,当对应的均值不再变化或迭代次数最大时迭代结束,输出聚类结果,否则重复。本发明通过稀疏均值使得均值也就是类中心点和样本点一样具有局域稀疏特性,增加基于样本点和均值欧氏距离来描述样本点和类相似性的有效性,在时间上更加高效,产生具有稀疏特性的均值使得类中心点更加自然地代表稀疏样本点的特性,同时为了增加对均值的稀疏性的控制,还在目标函数中加入均值范数的正则项以得到新的最小化目标函数,使得可以更加快速的求解。