[00244368]用于人类行为识别的深度联合结构化和结构化学习方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201611223815.1
交易方式:
技术转让
技术转让
技术入股
联系人:
浙江工业大学
进入空间
所在地:浙江杭州市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
一种用于人类行为识别的深度联合结构化和结构化学习的方法,包括以下步骤1)构造联合结构和结构公式化;2)使用空间网络从图像中的人体区域提取深层卷积神经网络特征,将空间网络的fc6层的输出作为深度特征,使用梯度直方图和光流直方图特征来进一步增强特征表示;CNN,HOG和HOF特征被连接以表示图像中的个人行为或交互关系,使用这种特征为每个数据集训练两个线性支持向量机分类器,使用组合特征来计算公式(1)中的联合特征;3)训练模型的参数;4)训练和预测中的相关推理,在训练的每次迭代期间,针对每个训练示例解决损失增强推理。本发明适用于多个行为类别的图像、能够识别交互行为。
一种用于人类行为识别的深度联合结构化和结构化学习的方法,包括以下步骤1)构造联合结构和结构公式化;2)使用空间网络从图像中的人体区域提取深层卷积神经网络特征,将空间网络的fc6层的输出作为深度特征,使用梯度直方图和光流直方图特征来进一步增强特征表示;CNN,HOG和HOF特征被连接以表示图像中的个人行为或交互关系,使用这种特征为每个数据集训练两个线性支持向量机分类器,使用组合特征来计算公式(1)中的联合特征;3)训练模型的参数;4)训练和预测中的相关推理,在训练的每次迭代期间,针对每个训练示例解决损失增强推理。本发明适用于多个行为类别的图像、能够识别交互行为。