[00244277]基于奇异值权重函数的非局部TV模型图像去噪方法
交易价格:
面议
所属行业:
分析仪器
类型:
发明专利
技术成熟度:
正在研发
专利所属地:中国
专利号:CN201611219201.6
交易方式:
技术转让
技术转让
技术入股
联系人:
浙江工业大学
进入空间
所在地:浙江杭州市
- 服务承诺
- 产权明晰
-
资料保密
对所交付的所有资料进行保密
- 如实描述
技术详细介绍
一种基于奇异值权重函数的非局部TV模型图像去噪方法。步骤如下(1)首先输入噪声图像。(2)设置算法的相关参数,包括非局部搜索窗口大小N1×N1、邻域窗口大小N2×N2、像素相似度权重函数的参数h、j、高斯核的标准差σ,分裂的Bregman迭代辅助变量的初始值b0、保真参数λ,以及平滑参数θ。(3)通过奇异值分解方法获得图像块的最大奇异值。(4)构建基于该最大奇异值的新的像素相似度权重函数。(5)应用步骤(4)构建的权重函数,建立非局部TV模型。(6)对步骤(5)建立的非局部TV模型采用分裂的Bregman算法进行求解。(7)通过分裂的Bregman算法数值迭代运算获得去噪图像。(8)如果迭代满足停止条件,输出迭代最优结果图像并转向步骤(9),如果不满足停止条件,则返回步骤(7)继续迭代。(9)将步骤(8)的迭代最优结果图像作为最后去噪结果图像。
一种基于奇异值权重函数的非局部TV模型图像去噪方法。步骤如下(1)首先输入噪声图像。(2)设置算法的相关参数,包括非局部搜索窗口大小N1×N1、邻域窗口大小N2×N2、像素相似度权重函数的参数h、j、高斯核的标准差σ,分裂的Bregman迭代辅助变量的初始值b0、保真参数λ,以及平滑参数θ。(3)通过奇异值分解方法获得图像块的最大奇异值。(4)构建基于该最大奇异值的新的像素相似度权重函数。(5)应用步骤(4)构建的权重函数,建立非局部TV模型。(6)对步骤(5)建立的非局部TV模型采用分裂的Bregman算法进行求解。(7)通过分裂的Bregman算法数值迭代运算获得去噪图像。(8)如果迭代满足停止条件,输出迭代最优结果图像并转向步骤(9),如果不满足停止条件,则返回步骤(7)继续迭代。(9)将步骤(8)的迭代最优结果图像作为最后去噪结果图像。