X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
平台简介 | 帮助中心
欢迎来到科易厦门城市创新综合服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00222289]一种稀疏自适应半监督多流形学习的高光谱影像分类方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201510197492.2

交易方式: 技术转让 技术转让 技术入股

联系人: 重庆大学

进入空间

所在地:重庆重庆市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明提供一种稀疏自适应半监督多流形学习的高光谱影像分类方法,其提出了半监督稀疏多流形学习维数约简算法和最近邻多流形分类算法,该方法仅通过对数据样本中的少量数据点进行标注,并结合部分未标注数据点来进行学习,能很好地揭示出蕴藏在高维数据的内在属性以及多流形结构,提取出具有更好鉴别性能的低维嵌入特征,从而改善分类效果,提高对高光谱遥感影像中地物类别的分类精度,因此能够有效的解决稀疏流形聚类与嵌入算法的“样本外学习”和遥感图像标记类别标签困难的问题;同时,在PaviaU数据集上的实验结果表明,与现有技术中所常用的识别方法相比,本发明方法具有更好的分类效果。
摘要:本发明提供一种稀疏自适应半监督多流形学习的高光谱影像分类方法,其提出了半监督稀疏多流形学习维数约简算法和最近邻多流形分类算法,该方法仅通过对数据样本中的少量数据点进行标注,并结合部分未标注数据点来进行学习,能很好地揭示出蕴藏在高维数据的内在属性以及多流形结构,提取出具有更好鉴别性能的低维嵌入特征,从而改善分类效果,提高对高光谱遥感影像中地物类别的分类精度,因此能够有效的解决稀疏流形聚类与嵌入算法的“样本外学习”和遥感图像标记类别标签困难的问题;同时,在PaviaU数据集上的实验结果表明,与现有技术中所常用的识别方法相比,本发明方法具有更好的分类效果。

推荐服务:

智能制造服务热线:0592-5380947

运营商:厦门科易帮信息技术有限公司     

增值电信业务许可证:闽B2-20100023      闽ICP备07063032号-5