X为了获得更好的用户体验,请使用火狐、谷歌、360浏览器极速模式或IE8及以上版本的浏览器
平台简介 | 帮助中心
欢迎来到科易厦门城市创新综合服务平台,请 登录 | 注册
尊敬的 , 欢迎光临!  [会员中心]  [退出登录]
当前位置: 首页 >  科技成果  > 详细页

[00222284]一种基于零空间LDA的语义空间监督学习的图像分类方法

交易价格: 面议

所属行业: 分析仪器

类型: 发明专利

技术成熟度: 正在研发

专利所属地:中国

专利号:CN201710586578.3

交易方式: 技术转让 技术转让 技术入股

联系人: 重庆大学

进入空间

所在地:重庆重庆市

服务承诺
产权明晰
资料保密
对所交付的所有资料进行保密
如实描述
|
收藏
|

技术详细介绍

摘要:本发明涉及一种基于零空间LDA的语义空间监督学习的图像分类方法,属于属于图像分类领域。该方法包括以下步骤采集图像数据库Z样本,在数据Z的原始表示上,求出组内散度矩阵、组间散度矩阵,以及全散度矩阵;对全散度矩阵St做特征值分解;当终止条件||YQ(k+1)‑X(k+1)||F≤ε成立时终止迭代,否则k←k+1;得到样本语义空间结构向量X,将样本Z投影至语义空间得到语义表示将KNN分类器应用于语义空间表示上得到标签L。本发明解决了传统LDA算法无法有效的解决由样本维数大于样本个数而引起的小样本问题,相较于DLDA、PCA+LDA以及SRC算法在分类精度上有着不小的提升。
摘要:本发明涉及一种基于零空间LDA的语义空间监督学习的图像分类方法,属于属于图像分类领域。该方法包括以下步骤采集图像数据库Z样本,在数据Z的原始表示上,求出组内散度矩阵、组间散度矩阵,以及全散度矩阵;对全散度矩阵St做特征值分解;当终止条件||YQ(k+1)‑X(k+1)||F≤ε成立时终止迭代,否则k←k+1;得到样本语义空间结构向量X,将样本Z投影至语义空间得到语义表示将KNN分类器应用于语义空间表示上得到标签L。本发明解决了传统LDA算法无法有效的解决由样本维数大于样本个数而引起的小样本问题,相较于DLDA、PCA+LDA以及SRC算法在分类精度上有着不小的提升。

推荐服务:

智能制造服务热线:0592-5380947

运营商:厦门科易帮信息技术有限公司     

增值电信业务许可证:闽B2-20100023      闽ICP备07063032号-5